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TA: LEE, Yat Long Luca
Email: yllee@math.cuhk.edu.hk
Office: Room 505, AB1
Office Hour: Send me an email first, then we will arrange a meeting (if you need it).

Solution will be uploaded after the tutorial on Wednesday.

Recall

We shall prove (iii) =⇒ (i) in this tutorial. Then we finish the proof.

Theorem 1.3 Let (X, d) be a metric space and K ⊂ X. Then the following are equivalent:

(i) K is compact

(ii) Every sequence in K has a convergent subsequence which converges in K

(iii) K is complete and totally bounded

Last week you learned:

Theorem 4.2 (Ascoli’s Theorem) Consider C(G) where G is bounded, open in Rn. A set
E in C(G) is precompact if it is bounded and equicontinuous.

Theorem 4.4 (Arzelà’s Theorem) Every precompact set in C(G) must be bounded and
equicontinuous.

They are usually put together and called Arzelà-Ascoli’s Theorem. It is one of the most
essential and fundamental theorem in analysis.

In addition to the given statement, if E is closed, then Arzelà-Ascoli can be written as E
compact ⇐⇒ bounded and equicontinuous. (Check!)

Note that, in different context, there is a slightly different version of the Arzelà-Ascoli’s
Theorem. But they are more or less the same. We state the version of Arzelà-Ascoli’s Theorem
that we will be using later:

Arzelà-Ascoli’s Theorem Let I = [a, b] be a compact interval. Let xn(t) : I → Rd be a
sequence of functions such that

(i) there exists a constant M > 0 such that |xn(t)| ≤ M for any n and t ∈ I, i.e., {xn(t)}
is uniformly bounded; and

(ii) the sequence {xn(t)} is equicontinuous in I.

Then there exists a subsequence {xnk(t)} that converges uniformly on I to a limit func-
tion y(t) as n → ∞.
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Proof of (iii) =⇒ (i)

Idea: Proof by contradiction.
Goal: For any open covering of X, which is complete and totally bounded, we want to show
the existence of a finite subcovering such that it covers X.

Proof:
Suppose there exists an open cover, {Uα}α∈I , of X such that it does not contain any finite sub-
cover from {Uα}α∈I that covers X.

Since X is totally bounded, then it can be covered by a finite ε-net. In particular, we may
take ε = 1 for simplicity. If all these balls can be covered by finitely many Uα, then it contra-
dicts our assumption. If not, then there must be a ball, say, B(x0, 1), that cannot be covered by
finitely many Uα.

Since X is totally bounded, then B(x0, 1) is also totally bounded. In particular, we may
cover B(x0, 1) by a finite ε-net, in which we choose ε = 1

2 this time. Then one can observe that
the centers of each 1

2 -ball must be at most 1 + 1
2 away from x0. Otherwise, the ball will not

cover B(x0, 1). If B(x0, 1) can be covered by finitely many Uα, then there is a contradiction. If
not, then there is a ball B(x1, 1

2 ) such that it cannot be covered by finitely many Uα. Moreover,
the above discussion implies

d(x0, x1) ≤ 1 +
1
2

We are starting to see a loop here. Since X is totally bounded, then B(x1, 1
2 ) is also totally

bounded. Then with a similar argument, one can see that

d(x1, x2) ≤
1
2
+

1
4

With the above construction, we obtain a sequence of point x0, x1, ... in X such that each
ball B(xn, 2−n) cannot be covered by finitely many Uα and that

d(xn, xn+1) ≤ 2−n + 2−n−1

for all n = 1, 2, .... From this, we see that {xn} is Cauchy as

∞

∑
n=1

d(xn, xn+1) < ∞.

Together with the fact that X is complete, then it has a limit, say, x, that lies in X.

Now that we have obtained a convergent sequence, and that {Uα}α∈I is an open cover of
X. Then the limit x must lie in at least one of the Uα’s. Moreover, Uα is open, and x ∈ Uα, so
there exists r > 0 such that B(x, r) ⊂ Uα. Also, the convergence of xn means that we can find
an n such that

d(xn, x) <
r
2

for which 2−n < r
2 . In particular, this implies B(xn, 2−n) ⊂ B(x, r) ⊂ Uα. Contradiction.

!
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Exercise 1

Source: Previous HW Problem from MATH4051@HKUST by Prof Frederick Fong

Suppose Fk = (F1
k , ..., Fd

k ) : Rd → Rd is a sequence of C2-vector fields such that there exists
a constant M > 0 such that

d

∑
i=1

|Fi
k(x)|+

d

∑
i, j=1

!!!!!
∂Fi

k
∂x j

(x)

!!!!!+
d

∑
i, j,l=1

!!!!!
∂2Fi

k
∂x j∂xl

(x)

!!!!! ≤ M (0.1)

for any x ∈ Rd and k ∈ N.

Show that there exists a subsequence of {Fk}∞k=1 which converges uniformly on Rd to a limit
F∞ : Rd → Rd.

Solution:
Equation (0.1) tells is that {Fk} and ‖DFk‖ are both uniformly bounded on Rd. Proposition

4.1 then implies that {Fk}∞k=1 is equicontinuous on Rd. However, if we are to apply the Arzelà-
Ascoli’s Theorem, we need to apply it over a compact (or closed and bounded, but they are the
same over Euclidean space) domain. We do it as follows:

• Consider the ball B1(0), which is compact, then Arzelà-Ascoli’s Theorem implies that
there exists a subsequence {F1,k}∞k=1 such that it converges uniformly to a limit function
F∞ on B1(0).

• Then consider the ball B2(0) and the subsequence {F1,k}∞k=1, which is also equicontinuous
and uniformly bounded on B2(0). Then, Arzelà-Ascoli’s Theorem implies there exists a
subsequence {F2,k}∞k=1 ⊂ {F1,k}∞k=1 such that it converges uniformly to a limit function on
B2(0). By the uniqueness of limit, such a subsequence must converges to a limit function
in which it coincides with F∞ on B1(0). We may denote the limit function of {F2,k}∞k=1 on
B2(0) by F∞ as well.

• Inductively: There exists subsequences

{F1,k}∞k=1 ⊃ {F2,k}∞k=1 ⊃ {F3,k}∞k=1 ⊃ · · ·

such that for each n ∈ N, the sequence {Fn,k}∞k=1 converges uniformly to a limit function
F∞ on Bn(0).

Next, we will use a diagonalization argument as in the proof of the Arzelà-Ascoli’s Theo-
rem.

Consider a diagonal sequence {Fk,k}∞k=1. We want to show that this is the subsequence as
desired. For any compact set K, there exists N > 0 large enough so that K ⊂ BN(0) (bound-
edness of K). Note that, for any n ≥ N, the sequence {Fn,k}∞k=1 ⊂ {FN,k}∞k=1, and hence
{Fn,n}∞n=N ⊂ {FN,k}∞k=1. Since {FN,k}∞k=1 converges uniformly to F∞ on BN(0) ⊃ K as k → ∞,
so {Fn,n}∞n=N converges uniformly on K. Then, by adding finitely many terms to the sequence
{Fn,n}∞n=N , the sequence {Fk,k}∞k=1 converges uniformly on K to F∞ as k → ∞.

!
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