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TA: LEE, Yat Long Luca

Email: yllee@math. cuhk.edu.hk

Office: Room 505, AB1

Office Hour: Send me an email first, then we will arrange a meeting (if you need it).

Solution will be uploaded after the tutorial on Wednesday.

Recall

We shall prove (iii) = (i) in this tutorial. Then we finish the proof.

Theorem 1.3 Let (X, d) be a metric space and K C X. Then the following are equivalent:
(i) K1is compact
(ii) Every sequence in K has a convergent subsequence which converges in K

(iii) K is complete and totally bounded

Last week you learned:

Theorem 4.2 (Ascoli’s Theorem) Consider C(G) where G is bounded, open in R”. A set

€ in C(G) is precompact if it is bounded and equicontinuous.

Theorem 4.4 (Arzela’s Theorem) Every precompact set in C(G) must be bounded and
equicontinuous.

They are usually put together and called Arzela-Ascoli’s Theorem. It is one of the most

essential and fundamental theorem in analysis.

In addition to the given statement, if £ is closed, then Arzela-Ascoli can be written as £

compact <= bounded and equicontinuous. (Check!)

Note that, in different context, there is a slightly different version of the Arzela-Ascoli’s

Theorem. But they are more or less the same. We state the version of Arzela-Ascoli’s Theorem

that we will be using later:

Arzela-Ascoli’s Theorem Let I = [a,b] be a compact interval. Let x,(t) : I — R? be a
sequence of functions such that

(i) there existsa constant M > 0 such that |x,(t)| < Mforanynandt € I,i.e., {x,(t)}
is uniformly bounded; and

(ii) the sequence {x,(t)} is equicontinuous in I.

Then there exists a subsequence {x,, ()} that converges uniformly on I to a limit func-
tion y(t) as n — oo.
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Proof of (iii) — (i)

Idea: Proof by contradiction.
Goal: For any open covering of X, which is complete and totally bounded, we want to show
the existence of a finite subcovering such that it covers X.

Proof:
Suppose there exists an open cover, { Uy }«e1, of X such that it does not contain any finite sub-
cover from {Uy } ¢ that covers X.

Since X is totally bounded, then it can be covered by a finite e-net. In particular, we may
take ¢ = 1 for simplicity. If all these balls can be covered by finitely many Uy, then it contra-
dicts our assumption. If not, then there must be a ball, say, B(xo, 1), that cannot be covered by
finitely many U.

Since X is totally bounded, then B(xp,1) is also totally bounded. In particular, we may
cover B(xp, 1) by a finite e-net, in which we choose ¢ = % this time. Then one can observe that
the centers of each }-ball must be at most 1 + 1 away from xo. Otherwise, the ball will not
cover B(xp,1). If B(xp,1) can be covered by finitely many Uy, then there is a contradiction. If
not, then there is a ball B(x1, %) such that it cannot be covered by finitely many Uy. Moreover,
the above discussion implies

1
d(xO/ xl) S 1+ E

We are starting to see a loop here. Since X is totally bounded, then B(x, %) is also totally
bounded. Then with a similar argument, one can see that

1
+ =

d(xq,x2) < i

N| =

With the above construction, we obtain a sequence of point xo, x1, ... in X such that each
ball B(x,,2~") cannot be covered by finitely many U, and that

d(xn, Xpp1) <270 2771

foralln = 1,2, .... From this, we see that {x, } is Cauchy as

d(xy, xp41) < 00.

18

n=1

Together with the fact that X is complete, then it has a limit, say, x, that lies in X.

Now that we have obtained a convergent sequence, and that {Uy }«¢; is an open cover of

X. Then the limit x must lie in at least one of the Uy’s. Moreover, Uy is open, and x € Uy, so

there exists r > 0 such that B(x,r) C Uy. Also, the convergence of x, means that we can find
an n such that

d(xy, x) <

I\)I\.)I\*.

for which 27" < £. In particular, this implies B(x,,27") C B(x,r) C Uy. Contradiction.
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Exercise 1

Source: Previous HW Problem from MATH4051@HKUST by Prof Frederick Fong

Suppose F, = (FL, ..., F?) : R? — R? is a sequence of C2-vector fields such that there exists
a constant M > 0 such that
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for any x € R? and k € N.

Show that there exists a subsequence of {F;}2°, which converges uniformly on R? to a limit
: RY — R4,
o0

Solution:

Equation (0.1) tells is that {Fj} and | DF|| are both uniformly bounded on R?. Proposition
4.1 then implies that {F;}2° ; is equicontinuous on R?. However, if we are to apply the Arzela-
Ascoli’s Theorem, we need to apply it over a compact (or closed and bounded, but they are the
same over Euclidean space) domain. We do it as follows:

e Consider the ball B;(0), which is compact, then Arzela-Ascoli’s Theorem implies that
there exists a subsequence {F ;}°, such that it converges uniformly to a limit function
Fo on By (0).

e Then consider the ball B, (0) and the subsequence {F; ; } 22 ,, which is also equicontinuous
and uniformly bounded on B, (0). Then, Arzela-Ascoli’s Theorem implies there exists a
subsequence {F; }7°; C {Fyx}2, such thatit converges uniformly to a limit function on

B,(0). By the uniqueness of limit, such a subsequence must converges to a limit function
in which it coincides with F, on B;(0). We may denote the limit function of {F;}£° ; on
Bz( ) by Fo as well.

e Inductively: There exists subsequences
{FrideZs D {Fax}ily O {FaxhiZy O -+

such that for each n € N, the sequence {F,  }?°, converges uniformly to a limit function
F on B,(0).

Next, we will use a diagonalization argument as in the proof of the Arzela-Ascoli’s Theo-
rem.

Consider a diagonal sequence {Fj ;}2° ;. We want to show that this is the subsequence as

desired. For any compact set K, there exists N > 0 large enough so that K C By(0) (bound-
edness of K). Note that, for any n > N, the sequence {F,;}*; C {Fni}t2;, and hence
{Fun}n C {Fnite2;- Since {Fyi}t2, converges uniformly to Fy, on By(0) D Kask — oo,
50 {Fyn }7° 5 converges uniformly on K. Then, by adding finitely many terms to the sequence

{Fp,n}52 N, the sequence {Fy;}22, converges uniformly on K to F, as k — oo.
|



